Color variation of small mammals’s (Mammalia: Rodentia and Insectivora) coats from Bulgaria

Nedko NEDYALKOV1,*, Yordan KOSHEV2, Ivaylo RAYKOV3 and Georgy BARDAROV4

1. National Museum of Natural History – Bulgarian Academy of Science, 1 Tzar Osuoboditel Blvd., 1000 Sofia, Bulgaria,
2. Institute of Biodiversity and Ecosystem Research – Bulgarian Academy of Science, 1 Tzar Osuoboditel Blvd., 1000 Sofia, Bulgaria.
4. Vardim 5287, 1 Dvanadeseta Str., Bulgaria.

* Corresponding author, N. Nedyalkov, E-mail: nnedko@gmail.com

Received: 17. February 2013 / Accepted: 30. January 2014 / Available online: 26. March 2014 / Printed: December 2014

Abstract. During field surveys for small mammals in Bulgaria we found specimens of Crocidura leucodon, Talpa europaea and a Mus sp with color variation. We reviewed the national scientific collections and the available literature for cases of small mammals with color variations. Color variation in small mammals is very rare, so far we found nine cases only, five cases of T. europaea and one case each of C. leucodon, C. suveolens, Sorex araneus and Mus sp. The albino C. leucodon is one out of 143 white-toothed shrews (Crocidura sp.) or 0.69%. The form of the partially leucistic Mus sp. is one out of 633 mice (0.15%), caught between 2001 and 2007.

Key words: color variation, albinism, leucism, mole, shrew, mouse, Bulgaria.

Introduction

The fur coloration is an important factor that determines individual survival in mammals, mainly because of its camouflage function (Searle 1968). The terminology used throughout the literature to describe abnormal colorations is at times conflicting. Therefore, we chose to follow Grouw (1997) who clarifies the terminology. Generally, albinism is applied for all cases when pigmentation is missing in the coloration of an individual - either completely or partially. In the classic case, albinism is when pigment is missing in the coat, the eyes, or the skin. Leucism, also incorrectly termed partial albinism (Bowman & Curran 2000), describes a condition where the pigmentation is missing partially or completely in the coat, but the retina is normally colored. The second case is relatively rare within small mammals (Steen & Sonerud 2012).

The precise determination between the two variations sometimes is very difficult, not only in nature, but especially in museum specimens as a result of variations in the type of or method of preservation as well as changes due to aging of specimens.

Albinism is caused by a single genetic mutation that is thought to have no adaptive significance since albinos are rapidly removed from their populations by the predators. Melanism (black or very dark brown pelage), however, may be found in 20% of the individuals in some populations (Caro 2005).

This study describes cases of rare color variations in insectivores and rodents found in Bulgaria.

Materials and Methods

The results are based on data collected in surveys between 2001–2012. The majority of the samplings are from the Thracian lowland, central Bulgaria. During an ecological survey in the upper part of the Thracian lowland, Kambourova-Ivanova et al. (2012) permanently set 70 wet pit-fall traps every year between 2008–2012. Pitfall traps consisted of plastic pots 12 cm across and 18 cm deep. Each trap was half-filled with a 40% solution of ethyl alcohol and water. Traps were not baited. Traps were emptied of specimens and more preservative added (if necessary) approximately every month from April to September. Specimens were preserved in a 50 % solution of ethyl alcohol and water. During this period about 1000 individuals of small mammals from ten species were recorded. Part of the material is from studies of communities of small mammals in agricultural lands in northeastern Bulgaria (2001–2007). All individuals were identified based on Peshev et al. (2004).

We examined small mammal collections deposited in the largest scientific institutions in Bulgaria which are located in the Museum of Natural History – Varna, Museum of Natural History – Plovdiv, National Museum of Natural History (BAS) – Sofia, and the Institute of Biodiversity and Ecosystem Research (BAS). We reviewed the available literature for reported cases of color variation of small mammals in Bulgaria.
Color variation of small mammals’s coats from Bulgaria

Results

During the field studies we identified different degrees of color variation of the coat in three species of small mammals – Crocidura leucodon, Talpa europaea and Mus sp.,

One female specimen of albino bi-coloured white-toothed shrew (C. leucodon) was caught in a wet pitfall trap (Fig. 1A) on 6 July 2011 near Dobrovnița village (Pazardzhik district, Bulgaria) close to highway “Trakia” (N 42°13’30”, E 24°23’22”). The albino specimen of C. leucodon was an adult female (Fig. 1A). It had heavily worn upper intermediate teeth which, under the discrimination scheme by Sokolov & Tembotov (1989), indicate that the relative age of this individual should be about one year old. The specimen had well-developed mamillas. This is the only albino form of Plovdiv and Pazardzhik.

The second case of color variation was a specimen of T. europaea with cream colored coat (Fig. 1B), which was found (GB) near Vardim village (Veliko Tarnovo district, Bulgaria) (N 43°36’57”, E 25°27’23”) on 25 April 2008. Its age, sex and size are unknown – the specimen was not collected.

During a population dynamic study of small mammal communities in Dobrudžha on 18.06.2005 in a wheat field near Tsarev brod village (Shumen district) (N 43°19’26”, E 26°59’54”) we caught forms of Mus sp. which were partly leucistic (Fig. 1C). Its partial leucism included its white lower back and abdomen up to the chest. The specimen is one out of 633 individuals of Mus sp. (0.15%) caught between 2001 and 2007.

According to Peshev et al. (2004) in north Bulgaria two species of house mice are present, indistinguishable in the field – M. spicilegus and M. musculus; therefore, the specimen was not identified to the species level.

In total, nine individuals of five species with varying coloration anomalies were identified from field surveys, museum records, and literature review (Table 1).

Discussion

The forms of T. europaea with color variation are not as rare as we expected. In Bulgaria we found five specimens with coloration anomalies in moles. Because these are all museum specimens and the natural eyes are missing, we cannot use the color of the retina to decide whether they exhibited albinism or leucism. Two records have white color of the fur, they are moles exhibited in National Museum of Natural History (BAS) and Museum of Natural History – Varna. Another two records were reported by Peshev et al. (2004) who described albino and straw-yellow moles from Vitosha Mt. and Rui Mt. (Table 1). Łopucki & Mróz (2010) in their review about the small mammal’s coloration anomalies on the territory of Poland reported six mole individuals, all with cream color. There is a report for two albino moles from Czech Republic (Andera 2010).

Such high number of albino moles found in various parts of Europe supports the hypothesis that the relatively frequent appearance of albino individuals in the mole populations is a result of low predator pressure due to their subterranean way of life (Yokohata 2005, Łopucki & Mróz 2010). The effect of habitat isolation is less important because the mole occurs in various types of terrestrial biotopes and the barriers for this species are mainly big rivers and strongly urbanized areas (Łopucki & Mróz 2010).

In Bulgaria we found three cases with color variation of fur of shrews: C. suaveolens, C. leucodon and Sorex araneus. There are a several records for different color anomalies of shrews: a melanist, a full or a partial albino form of Sorex araneus (Gelling 2003, Chêtnicki et al. 2007, Łopucki & Mróz 2010), an albino form of Suncus murinus (Jogahara et al. 2008), a white-spotted albino form of Neomys fodiens (Janečková 2001). Bulgarian National Museum of Natural History (BAS) – Sofia exhibits one albino Lesser white-toothed shrew (C. suaveolens).

We found two reports about coloration anomalies (melanic form) of C. leucodon from Southern Slovakia (Baláž et al. 2007). The albnism cases of C. leucodon are rare, but there are two documented reports found (Nitsche 1885, Masseti 2012).

It is possible that shrews with coloration anomalies occur in the natural populations but they are under strong selection pressure. This might be caused by the lower viability of such animals, the pleiotropic effects of genes that determine coloration, or the reduced ability to hide from predators (Searle 1968). It is also notable that the populations in which the studied shrews originated are located on the boundaries of the contact zones between chromosome races (Chêt-
Table 1. Cases of color variation of small mammals from Bulgaria.

<table>
<thead>
<tr>
<th>Species</th>
<th>Coloration anomaly</th>
<th>No. of individuals</th>
<th>Locality</th>
<th>Coordinates</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talpa europaea</td>
<td>Albinism/leucism</td>
<td>1</td>
<td>Varna region</td>
<td>Museum of Natural History - Varna. No additional data.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Peshev et al. (2004). No additional data.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>straw-yellow</td>
<td>1</td>
<td>Vitosha Mt.</td>
<td>National Museum of Natural History (BAS). No additional data.</td>
<td></td>
</tr>
<tr>
<td>Crocidura leucodon</td>
<td>Albinism</td>
<td>1</td>
<td>Dobrovnitsa village (Pazardzhik district)</td>
<td>Collection data: Y. Koshev and N. Nedyalkov, 6.07.2011. ♂, Ad.</td>
<td></td>
</tr>
<tr>
<td>Mus sp.</td>
<td>Leucism (partial albino)</td>
<td>1</td>
<td>Tsarev brod village (Shumen district)</td>
<td>Collection data: I. Raykov, 18.06.2005. Ad.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Coloration anomalies of the coat of *C. leucodon* (A), *T. europaea* (B) and *Mus* sp. (C) from Bulgaria, collected during field surveys.

The frequency of occurrence of atypically colored individuals in a population is largely affected by the environmental conditions. Thus, changes in the genetic structure of small mammal populations displayed as albinism or melanism can act as indicators for environmental changes (Łopucki & Mróz 2010).

Acknowledgments. The present study was supported by National Science Fund through the Ministry of Education, Science, Youth and Sport under Contract № 02-303/18.12.2008 and partly supported by the European Social Fund through the Ministry of Education, Youth and Science of Bulgaria under Contract № BG 051 PO001-3.3.04/41 and DO 02-270/08. We thank Ronny Steen and Yurii Kornilev for helpful comments and suggestions that improved the manuscript. We are especially grateful to G. Popgeorgiev (Regional Natural History Museum – Plovdiv, Bulgaria) and I. Mollov (Faculty of Biology, Plovdiv University, Bulgaria) for their help in the field work.
Balaž, I., Bridišová, Z., Ambros, M. (2007): Nálezy melanických formi bieložubých bieločočných (Crocidura leucodon) a hranče poľného (Microtus arvalis) na Podunajskéj rovine [Records of melanistic forms of the bicoloured white-toothed shrew (Crocidura leucodon) and the common vole (Microtus arvalis) in Podunajská nížina (Danube Lowland, southern Slovakia)]. Lynx (Prague) 38: 99–102. [in Czech, with a summary in English]
Jarečková, K. (2001): Nálezy bielej škvrnutosti u dulovnice väčší, Neomys fodiens (Pennaunt, 1771) v Maťich Karpatoch. [White spotted water shrew Neomys fodiens (Pennaunt, 1771) in the Malé Karpaty Mts.]. Folia Faunistica Slovaca 6(16): 131–133. [In Slovak, with a summary in English]