Intensive infestation of Siberian pit-viper, *Gloydius halys halys* by the common snake mite, *Ophionyssus natricis*

Evgeniy SIMONOV* and Vadim ZINCHENKO

Institute of Animal Systematics and Ecology, Siberian Branch of Russian Academy of Science, Frunze St. 11, 630091 Novosibirsk, Russia

* Corresponding author: E. Simonov, Laboratory of Vertebrate Community Ecology, Institute of Animal Systematics and Ecology, Siberian Branch of Russian Academy of Science, Frunze St. 11, 630091 Novosibirsk, Russia, E-mail: ev.simonov@gmail.com

Abstract. We describe a case of intensive infestation of wild population of Halys pit-viper (*Gloydius halys*) by common snake mite (*Ophionyssus natricis*) in west Siberia. In the examined population all adult individuals (n = 10) were infected by *O. natricis*. Infection intensity varied from 3-4 to more than 20 mites per adult pit-viper. This is the second observation of *O. natricis* in west Siberia.

Key words: snakes, ectoparasites, *Gloydius halys*, *Ophionyssus natricis*, West Siberia.

The common snake mite, *Ophionyssus natricis* (Gervais, 1844) Camin, 1953 (Acari: Macronyssidae) is the most commonly reported ectoparasite among captive Squamata (Kettle 1990; Klauber, 1997; Wozniac & DeNardo 2000; Jacobson 2007). However, *O. natricis* is relatively rare in wild populations (Camin 1953; Kettle 1990; Stanyukovich & Johanssen 2005; Bakiev, 2007). An intensive infestation with *O. natricis* in a population of Siberian pit-viper, *Gloydius halys halys* (Pallas, 1776) (Viperidae: Crotalinae) was recorded during our field investigations.

An isolated population of *G. h. halys* was studied in the southeastern part of Novosibirsk region (West Siberia, Russia; 54º30´45´´N, 84º03´20´´E). A detailed description of study area is provided in Simonov (2009). Data for this report were obtained from 23rd to 30th August 2008. Ten adult and 4 neonate snakes were captured and examined for morphological features and occurrence of ectoparasites. At the same time, four individuals of *Natrix natrix scutata* (Pallas, 1771) were also captured. All specimens were released at the capture place after examination.

Acarine ectoparasites were identified as common snake mites (*O. natricis*) according to the key of Bregetova (1956) and the key of Moraza et al. (2009) (for genus *Ophionyssus*). We detected mites on all adult pit-vipers, but not observed any on neonates, nor on *N. n. scutata*. Ectoparasites were located on the soft tissues around the eyes, under scales and shields on the underside of a snake's head and more often in loreal pits (Fig. 1). Intensity of infestation was estimated as 3 mites per snake for two specimens, 4 for one specimen and more than 20 for seven individuals. However, an accurate count of their numbers was not possible, as the mites were very mobile.

Parasitism with *O. natricis* in natural populations of snakes has been reported for *Platyceps florulentus*, *Psammophis sibilans*, *P. schokari*, *Spalerosopsis diadema*, *Naja haje*, and *Telescopus dhara* in Egypt (Yunker 1956), for snakes of genera *Nerodia*, *Heterodon* (Camin 1948), *Couluber*, *Thamnophis*, *Lampropeltis*, *Ela*...
Intensive infestation of Siberian pit-viper by the common snake mite

Phe, Masticophis, and Crotalus (Schroeder 1934) in America and for _Natrix natrix, N. tessellata, Elaphe dione, Coluber karelini, Macroviipa lebetina, Echis carinatus, Dolichophis caspius_ from the former USSR (Markov et al. 1964; Belova & Grigoriev 1981, Stanyukovich & Iohanssen 2005; Bakiev 2007). _Ophionyssus viperae_ Miron & Ivan 2003 that were described from _Vipera ursinii_ in Romania, were synonymised with _O. natricis_ after Moraza et al. (2009). Also wild lizards were reported as hosts to _O. natricis: Sceloporus graciosus_ and _Uta stansburiana_ in USA (Goldberg & Bursey 1991a, 1991b) and _Tiliqua scincoides_ in Australia (Watharow & Reid 2002).

Figure 1. Common snake mites _O. natricis_ on the head of _G. h. halys_. (A) in loreal pits (black arrow), on the soft tissues around the eye (red arrows) and between infralabials (green arrows); (B) between anterior genials (black arrow) and among gular scales (red arrows).
However, no described natural infestations with *O. natricis* were as prevalent as found in our study. Goldberg & Bursey (1991a, 1991b) stated that only 8% of *S. gracilis* and 11% of *U. stansburiana* were infested with *O. natricis*. According to Markov et al. (1964), 4% of *N. natrix* and 20% of *N. tessellata* were infected. Belova & Grigoriev (1981) made the first report of *O.natricis* in west Siberia, when one specimen of snake mite was found on *N. natrix* in Novosibirsk region. Thus, we have the second observation of *O. natricis* in west Siberia and the first for *G. h. halys*. Along with Crotalinae, Garret & Harwell (1991) also noticed *O. natricis* location in loreal pits for captive *Bothriechis nigroviridis*. They report that mite infestations have been associated with loreal pit inflammation and impaction. Also for reptiles in captivity, Wozniak & DeNardo (2000) noted that the skin around chronically attached mites often becomes reddened and swollen. We did not observe any visible signs of lesions.

Acknowledgements. We thank Irina Marchenko (Institute of Animal Systematics and Ecology) for her help with determination of mites. Also, we want to thank the anonymous reviewer and Dr. Marco Zuffi for useful comments about manuscript.

References

Intensive infestation of Siberian pit-viper by the common snake mite

