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Abstract. Physalaemus albonotatus and Physalaemus santafecinus lay their eggs in foam nests that float on the water surface and may do 
so syntopically. However, details of this behavior remain poorly studied, and other reproductive traits are still unknown. Therefore, 
the present study aimed to describe and compare the reproductive traits of P. albonotatus (Pa) and P. santafecinus (Ps) sympatric 
populations from the floodplain of the Middle Paraná River (Santa Fe, Argentina). For each species, we characterized the spatial 
arrangement of the foam nests in the water bodies and their morphology. We estimated the size of the clutches and described egg 
color and chemical composition: glycogen, lipids, and proteins proportions. We described the anatomo-morphological changes 
during the embryonic stages of development. Finally, we estimated the hatching time and evaluated the hatching success in situ. 
The results show a high overlap in reproductive traits between the two species, without statistical differences in distance to the 
nearest coastline (Pa = 211.33 ± 152.72 mm, n = 6; Ps = 132.25 ± 176.50 mm, n = 8) and water depth under foam nest (Pa = 176.00 ± 
109.03 mm, n = 6; Ps = 130.63 ± 133.86 mm, n = 8), the macromolecular composition of the eggs (Glycogen: Pa = 3.69 ± 1.30 mm, n = 
5; Ps = 6.11 ± 2.30 mm, n = 8; Lipids: Pa = 19.48 ± 4.09 mm, n = 5; Ps = 15.61 ± 3.60 mm, n = 8; Proteins: Pa = 24.10 ± 8.66 mm, n = 2; Ps 
= 5.24 ± 3.05 mm, n = 6), embryonic development, and hatching success (Pa = 0.93 ± 0.04, n = 4; Ps = 0.96 ± 0.02, n = 4). We recorded 
differences in the diameter (Pa = 43.97 ± 6.95 mm, n = 12; Ps = 55.77 ± 5.84 mm, n = 11) and height of the foam nest (Pa = 30.01 ± 5.94 
mm, n = 12; Ps = 36.40 ± 7.94 mm, n = 11), the number of eggs per clutch (Pa = 498 ± 160, n = 25; Ps = 1,241 ± 556, n = 22) and 
hatching time (Pa = 39.07 ± 3.95 h, n = 7; Ps = 25.07 ± 3.58 h, n = 7). Divergence in these reproductive traits would facilitate the 
syntopic coexistence of the studied foam frogs. 
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Introduction 
 
Reproductive mode is defined by Salthe & Duellman (1973) 
as a combination of developmental and oviposition factors, 
including oviposition site characteristics, egg and clutch 
characteristics, duration of development, offspring stages, 
and size, and, in certain cases, the presence of parental care. 
So far, 71 different reproductive modes in amphibians have 
been described, encompassing a different combination of 
traits (Duellman & Trueb 1994, Haddad & Prado 2005, 
Iskandar et al. 2014, Seshadri et al. 2015, Nunes de Almeida 
et al. 2021). In Argentinean leptodactylids, two reproductive 
modes are recognized involving laying eggs in foam nests, 
with nests placed in or out of the water (Lavilla 2018), and 
rapidly hatching eggs (from a few hours to 2 days) (Downie 
1993, Zaracho et al. 2005, Valetti et al. 2014). Foam nests are 
considered an adaptation to environments with 
unpredictable rains, as the foam protects the eggs and 
tadpoles against desiccation (Heyer 1969, Duellman & Trueb 
1986) and predators (Downie 1990, Menin & Giaretta 2003). 
The nine species of the genus Physalaemus Fitzinger 1826 
(Anura: Leptodactylidae) found in Argentina lay their eggs 
in a foam nest that floats on the surface of the water; the 
embryonic development and the first stages of the typical 
larva take place in the nest without parental care (Duellman 
& Trueb 1994, Lavilla 2018). Additionally, embryonic 

development in species with oviposition strongly depends 
on the egg’s macromolecular composition (e.g., 
carbohydrates, lipids, and proteins) for its nutritional 
requirements (Lubzens et al. 2010, Li & Zhang 2017). Still, 
few studies have analyzed these parameters in amphibian 
eggs (e.g., Wallace & Selman 1990, O'Brien et al. 2010). 

The studied species were Physalaemus albonotatus 
(Steindachner 1864), and P. santafecinus Barrio 1965. Both 
species are semi-terrestrial, with small body size (snout to 
vent length: 28–34 mm) and explosive pattern reproductive 
activity concentrated in the spring–summer (September to 
March) (Zaracho et al. 2005, Ghirardi & López 2020). 
Physalaemus albonotatus is widely distributed in Brazil, 
Bolivia, Paraguay, and Argentina. In Argentina, this species 
inhabits the provinces of Misiones, Formosa, Chaco, 
Corrientes, Entre Ríos, and Santa Fe (Vaira et al. 2012). The 
distribution of P. santafecinus is smaller, encompassing a 
small portion of southern Paraguay and parts of the 
Argentinian provinces of Chaco, Corrientes, Formosa, and 
Santa Fe (Lavilla et al. 2002, Brusquetti et al. 2009, Vaira et al. 
2012). 

More information is available on the reproductive 
biology of P. albonotatus (Perotti 1994, Rodrigues et al. 2004, 
Zaracho et al. 2004, 2005, Prado & Haddad 2005, Schaefer & 
Kehr 2010, Gómez et al. 2016, Pupin et al. 2018, Cajade et al. 
2020) than P. santafecinus (Cajade et al. 2012, 2020). To 
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further understand the mechanisms facilitating the syntopic 
coexistence of these two species, our goal was to fill 
knowledge gaps, mainly on P. santafecinus, and compare 
reproductive traits between species. Thus, we describe and 
assess differences in foam nests morphology (diameter and 
height), foam nests’ spatial arrangement (depth under the 
nest and distance to the nearest coastline), number and color 
of eggs, embryonic development, egg's macromolecular 
composition, and hatching time and success, in sympatric 
populations of P. albonotatus and P. santafecinus in the 
floodplain of the Paraná Medio River (Santa Fe, Argentina). 
 
 
Material and methods 
 
Field observations and data collection were carried out during 
December 2014, March 2015, January, February, March, October, and 
December 2016 (Table 1) in three water bodies from the floodplain of 
the Middle Paraná River, Santa Fe province, Argentina: Site 1 
(31°38'27.8" S, 60°40'20.5" W, datum WGS84), Site 2 (31°36'18.2" S, 
60°36'00.7" W, datum WGS84); Site 3 (31°33'54.4" S, 60°31'15.3" W, 
datum WGS84) (Fig. 1). The three water bodies were temporary  
ponds of approximately 3000–3500 m2, with a maximum depth of 

28–35 cm, surrounded mostly by Poaceae vegetation. Rainfall data 
for the week before each field observation were provided by the 
Centro de Informaciones Meteorológicas (FICH-UNL) (Lewis & 
Goldingay 2005) (Table 1). 
 
 

Table 1. Date, sampling site, number of clutches collected for 
Physalaemus albonotatus (Pa) and P. santafecinus (Ps), and 
accumulated rainfall during the seven days before sampling. 

 

Sampling date  Site  Pa  Ps  
Rainfall  

(mm) 

11 December 2014  2  2  4  61.50 

4 March 2015  2  0  2  193.00 

23 March 2015  1  5  0  14.50 

14 January 2016  2  6  3  20.50 

10 February 2016  2  3  3  96.50 

3 March 2016  2  3  0  103.00 

17 October 2016  3  0  2  52.00 

24 December 2016  3  6  0  82.00 

26 December 2016  3  4  4  160.75 

27 December 2016  3  0  8  160.75 

 
 

 

 
 
Foam nest size and spatial arrangement 
In every sampling date, we randomly selected 1 or 2 foam nests from 
the found species and measured the nest’s maximum diameter and 
height in situ (P. albonotatus n = 12, P. santafecinus n = 11) with a 
digital vernier caliper (precision 0.05 mm) and the distance to the 
nearest coastline and the water depth under foam nest with a 
measuring tape (precision 1 mm). We collected foam nests from both 
species (P. albonotatus n = 25; P. santafecinus n = 22) and fixed them in 
situ in 4% formalin. In the laboratory, we gently separated and 
counted each egg from the nests under a stereomicroscope. 
Following the German Reichs-Ausschuß für Lieferbedingungen 
color standard code (RAL), we registered the eggs' color while being 
illuminated with a 450lm lamp at a distance of 20 cm. Also, we 
compiled published data on the number of eggs per nest from 
different populations of both species. The height and diameter of the 
foam nest, the water depth under the nest, the distance to the nearest 
coastline, and the number of eggs (i.e., response numerical variables) 
were compared between the species (explanatory categorical 
variable with two levels) using Gaussian-based linear models (LMs). 
Residual plots (quantile-quantile plots, residual vs. fitted values), 
Shapiro-Wilk, and Levene's test were used to test homoscedasticity 

and normality of residuals of LMs. Because the LMs that included 
water depth under the nest and the distance to the nearest coastline 
as response variables presented heteroscedasticity of residuals, we 
assessed the significance of these LMs using a permutation-based 
version of the Wald-type statistic (WTPS) since this analysis does not 
require normally distributed data or variance homogeneity 
(Friedrich et al. 2017). These statistical analyses were performed 
using the package GFD (Friedrich et al. 2017) in R 4.1.1 (R Core Team 
2020). For all analyses, we used a significance level (alpha) of 0.05. 
Values were expressed as means ± 1 standard deviation (SD). 
 
Eggs macromolecular composition 
To determine the macromolecular composition of eggs, we separated 
15 eggs (stages 8–15; Gosner 1960) from six fresh clutches (a total of 
90 eggs) of P. albonotatus and eight fresh clutches (a total of 120 eggs) 
of P. santafecinus. Eggs were carefully separated from the foam and 
frozen at -18 °C. Eggs’ glycogen, lipids, and proteins were quantified 
following the protocols of Seifter et al. (1950), Folch et al. (1957), and 
Lowry et al. (1951). Glycogen (P. albonotatus, n = 6; P. santafecinus, n = 
8) and lipids (P. albonotatus, n = 6; P. santafecinus, n = 8) were 
compared between species using LMs (see Foam nest size and spatial 

Figure 1. Studied sites. (A) Geographical 
representation of the study sites in the continent, 
country and province. (B) Satellite image with the 
localization of three studied sites (Google Earth). (1) 
Site 1, located between the University City of UNL 
and National Route 168, in Santa Fe city. (2) Site 2, 
located in the North Colastiné residential 
neighborhood of Santa Fe city. (3) Site 3, located in 
the locality Arroyo Leyes. 
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arrangement). Proteins were quantified in only two samples for P. 
albonotatus and six samples for P. santafecinus; thus, differences 
between species were not statistically assessed.  
 
Embryonic development 
To study changes in embryonic phases, we searched from 21:00 h for 
three fresh clutches from each species, laid during the same night at 
Site 3, thus exposed to comparable environmental and microhabitat 
conditions to reduce external differences in embryonic development. 
In the field, we extracted 10 eggs from each sampled clutch 
immediately after the foam nest was constructed and then every 
three hours until the eggs hatched. The samples were fixed in situ in 
4% formalin. Embryos were studied and photographed in the 
laboratory using a digital camera (Canon EOS Rebel T2i) mounted 
on a stereoscopic microscope (Leica L2). Embryonic changes were 
interpreted and described following Gosner (1960) and Gómez et al. 
(2016). 
 
Hatching time and success 
We selected foam nests of each species built during the same night at 
Site 3 to study hatching time (P. albonotatus, n = 7; P. santafecinus, n = 
7) and success (P. albonotatus, n = 4; P. santafecinus, n = 4). 
Immediately after construction, each foam nest was placed inside a 
closed plastic container (size: 170 × 220 mm side, 50 mm depth),  
filled ¾ with pond water and placed back in the same location where 
it was found (Fig. 2). Every three hours, the nests were checked, and 
the live and/or dead larvae in the container were recorded; these 
larvae were extracted and fixed in 4% formalin for later processing. 
Once the nest was completely dismantled and larvae were no longer 
recorded, the remaining foam with unhatched eggs were collected. 
We calculated the proportion of hatched and unhatched eggs per 
clutch. The hatching time and success were compared between 
species using LMs (see Foam nest size and spatial arrangement).  
 
 
Results 
 
Both species reproduced during spring and summer, 
following accumulated rainfall above 14.50 mm (14.50 to 
193.00 mm) during the previous week (Table 1). We 
registered aggregations of nests intentionally built close 
together (communal clutches) of both species in site 2 and 
site 3 (Fig. 3). 

We found a significant difference in foam nest height (H) 
(F = 4.82; p = 0.03; df = 1), with P. albonotatus foam nests 
being lower. Also, we found a significant difference in foam 
nest diameter (F = 19.21; p < 0.001; df = 1), with P. albonotatus 
foam nests having a smaller diameter (Table 2). However, no 
significant differences were found between water depth 
under the foam nest (WTPS = 0.48; p = 0.49) nor in distance 
to the nearest coastline (WTPS = 0.80; p = 0.39) (Table 2). 

We found significant differences between species in the 
number of eggs per clutch (WTPS = 9.01; p = 0.005). Clutches 
of P. albonotatus (mean = 498 ± 160, range = 184–840, n = 25) 
were smaller than clutches of P. santafecinus (mean = 1,241 ± 
556, range = 593–2,781, n = 22) (Table 3). Published data 
shows that the number of eggs per laying is highly variable 
among populations in both species (Table 3). We also 
noticed differences in the egg color, with P. albonotatus eggs 
being pure white (RAL 9010) and those of P. santafecinus 
ivory (RAL 1014). 

 

 

 

Figure 2. Foam nest used to evaluate hatching time and hatching 
success. 

 
 

 

 

Figure 3. Communal clutch of Physalaemus albonotatus. 
Approximately 38 foam nests laid in a temporary pond. 

 
 

Table 2. Height, diameter, depth and distance to the nearest 
coastline of the foam nests of Physalaemus albonotatus (Pa) and 
P. santafecinus (Ps). X: mean; SD: standard deviation. 

 

Species 
Nest  
characteristics 

n 
X 

(mm) 
Range 
(mm) 

SD 
(mm) 

  Pa 

Height 12 30.01 21–38 5.94 

Diameter 12 43.97 35–57 6.95 

Depth 6 176.00 86–320 109.03 

Nearest coastline 6 211.33 0–410 152.72 

  Ps 

Height 11 36.40 24–47 7.94 

Diameter 11 55.77 45–65 5.84 

Depth 8 130.63 10–400 133.86 

Nearest coastline 8 132.25 0–500 176.50 

 
 

Eggs macromolecular composition 
We found no significant differences between species in egg 
content of glycogen and lipids (WTPS = 0.57, p = 0.33, n = 6; 
WTPS = 0.04, p = 0.33, n = 8, respectively) (Table 4). The 
proteins values were very variable (17.98 µg and 30.23 µg 
proteins/egg for P. albonotatus and 1.03 µg, 3.26 µg, 5.41 µg, 
4.42 µg, 8.22 µg and 9.13 µg proteins/egg for P. santafecinus) 
(Table 4). 
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Embryonic development 
The first samples of eggs used to describe embryonic 
development were taken 2 to 3 hours after being laid by the 
parent frogs. The earliest foam nests for P. albonotatus were 
recorded at 22:15 h, 22:30 h, and 22:35 h and had dimensions 
(height × diameter, mm) of 35 × 41, 24 × 40, and 35 × 39, 
respectively. When initially observed, embryos were in 
stages 8–11 (Gosner 1960). 

The earliest foam nests of P. santafecinus were recorded at 
21:45 h, 22:10 h, and 22:35 h and had dimensions (height × 
diameter, mm) of 43 × 56, 30 × 53.5, 26 × 45. The three 
clutches had embryos between stages 12 and 13 (Gosner 
1960). 

The anatomo-morphological changes of the embryonic 

phases through both species were observed and are 
described as follows: 
 
Embryonic development of Physalaemus albonotatus (Fig. 4) 

Stage 8. Easily distinguishable blastomeres (B), no 
synchronization in the division planes. 

Stage 9. No differentiation in blastomeres boundaries. 
The embryo begins to have a smooth surface. It corresponds 
to a late blastula stage. 

Stage 10. The cells begin to invaginate and form the 
blastopore dorsal lip (DL). 

Stage 11. Cell invagination continues. The formation of 
the ventral lip around the blastopore gives rise to a yolk 
plug (YP) of significant size. 

 
 

Table 3. Coordinates of sampled sites and numbers of eggs and nests (in brackets) for 
Physalaemus albonotatus (Pa) and P. santafecinus (Ps). * The authors do not provide the 
number of nests used to count the eggs. ** In the original work, the values appear as 
means and 1 standard deviation. 

 

Pa Ps Coordinates Source 

184–840 (25) 593–2,781 (22) 31°33’S, 60°31’W This work 

320–1,163* 461–3,165* 27°25’S, 58°44’W Cajade et al. (2020) 

242–850 (6)  27°29’S, 58°45’W Schaefer & Kehr (2010) 

435–616 (3)  27°28’S, 58°46’W Zaracho et al. (2005) 

246–1,562 (19)  19°34’S, 57°00’W Prado & Haddad (2005) 

1474 (SD = 418)** (29)  20°40’S, 56°45’W Rodrigues et al. (2004) 

 
 

Table 4. Chemical composition of eggs evaluated for glycogen 
(nmol glucose/egg), lipid (nmol triolein/egg), and proteins 
(µg proteins/egg) content for Physalaemus albonotatus (Pa) 
and P. santafecinus (Ps). X: mean; SD: standard deviation. 

 

Species Chemical composition  n  X  Range  SD 

Pa 

Glycogen  5  3.69  2.43–5.84  1.30 

Lipids  5  19.48  13.05–23.72  4.09 

Proteins  2  24.10  17.98–30.23  8.66 

Ps 

Glycogen  8  6.11  3.46–9.91  2.30 

Lipids  8  15.61  9.66–19.95  3.60 

Proteins  6  5.24  1.03–9.13  3.05 

 
 
Embryonic development of P. albonotatus and P. santafecinus 
(Figs. 4, 5): 

Stage 12. The yolk plug decreases in size, and the egg 
begins to lose its spherical shape. It corresponds to a late 
gastrula stage. 

Stage 13. The egg loses its spherical shape and begins to 
acquire an oblong shape. There is a groove that belongs to 
the incipient formation of the neural plate (NP). Stage 13 is 
early, and the blastopore (Bp) caused by gastrulation is 
observed (Fig. 5). 

Stage 14. Oblong embryo. Neural folds (NF) forming a 
wide neural groove indicate an early stage. The neural 
groove (NG) is narrow, so stage 14 is advanced. 

Stage 15. Fused neural folds. In figure 5, an advanced 

stage 15 is observed, the embryo elongates and arches 
sharply, and three regions begin to differentiate (R1, R2, R3). 

Stage 16. The embryo continues to elongate. Three 
regions are observed: cephalic region (CeR), abdominal 
region (AR) (large and globose due to the presence of 
vitellus), caudal region (CaR) (small and thin). In the first 
region, the stomodeum (S) outline is shown (advanced stage 
16, Fig. 5). 

Stage 17. Notably distinguishable regions: in the cephalic 
region, there is an invagination pertaining to stomodeum. In 
addition, a bulge on each side of that region will cause 
external gills (G). The abdominal region acquires a larger 
size and globose shape, and the caudal region becomes 
elongated and thin about the previous stage. It is possible to 
differentiate the somites (So) in the dorsal middle part of the 
embryo. 

Stage 18. Two pairs of bumps in the cephalic region 
correspond to the outline of adhesive papillae (AP) (lower 
ventral cephalic region) and external gills (lower lateral 
cephalic region). The abdomen remains globose and large. 
Increases the size of the caudal region in which the dorsal 
and ventral fins are gently hinted. The somites are still 
observed. 

Stage 19. Poorly developed external gills in the cephalic 
region, distinguishable as a bifurcated protuberance. The 
stomodeum continues to be observed, and the adhesive 
papillae become more evident. There is scattered 
pigmentation on the back. The tail developed (long and thin) 
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with the dorsal and ventral fins (VTF) (Fig. 5). 
Stage 20. Increased pigmentation throughout the back. 

More developed external gills are observed in two pairs on 
each side of the cephalic region, one inferior with three 
filaments (IG1, IG2, and IG3) and another superior with two 
filaments (SG1 and SG2). The pair of adhesive papillae is 
easily visualized. 

Stage 21. The body acquires an elongated and thin shape. 
Eyes (E) are more pigmented than the body; the gills change 
shape and size (several shorter branches). The abdominal 

region gets thinner. The fins are translucent and larger (DTF, 
VTF) (observable in Fig. 5). 

 
Hatching time and hatching success 
A significant difference was found between species in time 
to hatch (WTPS = 24.07; p = 0.018).  Physalaemus albonotatus 
had  a mean hatching time of 39.07±3.95 h (range=33.50–
43.00 h; n = 7), while the mean hatching time of P. 
santafecinus was 25.07±3.58 h (range=22.33–31.25 h; n=7) (Fig. 
6). 

 
 

 

 

Figure 4. Details on embryonic development of P. albonotatus. 

 

 

Figure 5. Details on embryonic development of P. santafecinus. 
 
 

The proportion of hatched eggs in P. albonotatus clutches 
was 0.93 (SD = 0.04; n = 4), while that of P. santafecinus was 
0.96 (SD = 0.02; n = 4) (Fig. 6). No significant differences 
were found between species in hatching success (WTPS = 
1.607; p = 0.258). 

During the 43 hours that the study on time and hatching 
success lasted, air temperatures were 20.2 °C to 33.6 °C, the 
sky was mostly cloudy, the relative humidity was 80% to 
99%, and the atmospheric pressure was 1001.5–1014.2 hPa. 
The water temperature at the nest site ranged from 24.8 °C to 
32 °C during the day. 
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Discussion 
 
We confirmed a major overlap in the reproductive 
characteristics of the two studied species, which is not 
surprising considering they are congenerics that inhabit the 
same habitats within their area of sympatry. Still, P. 
albonotatus and P. santafecinus differed in the diameter and 
height of the foam nest, the number of eggs per clutch, and 
hatching time, possibly as a way of decreasing interspecific 
competition when they reproduce in syntopy. 

Physalaemus albonotatus and P. santafecinus overlapped in 
the reproductive microhabitat. Both laid eggs at the same 
water depth under the nest and the same distance to the 
coastline. Both species lay their eggs in shallow temporary 
water bodies or the shallow areas of semi-permanent water 
bodies (< 400 mm depth), flooded after spring and summer 
rainfall, in zones vegetated by emerging rooted macrophytes 
(Schaefer & Kehr 2010, Cajade et al. 2020). Using shallow 
temporary or semi-permanent ponds as reproduction 
microhabitats is a conserved trait, extended in Leiuperinae 
(Duré et al. 2004, Rodríguez 2004, Giaretta & Facure 2009, 
Hartmann et al. 2010). Syntopy at the microhabitat level, 
together with the temporal (seasonal) overlap of 
reproductive activity, imply a potential competition in this 
dimension of the ecological niche (Pianka 1986). However, 
they differ in other aspects, such as foam nest morphology 
and clutch size.  

The height, diameter, and number of eggs per nest of 
Physalaemus santafecinus were greater than the ones of P. 
albonotatus. The significant differences found between 
species in foam nest size (height and diameter), also 
described by Cajade et al. (2020), are probably related to the 
differences in the number of eggs they lay. Several studies 
show that larger eggs or more numerous eggs per clutch 
come from larger females (Perotti 1994, 1997, Wells 2007, 
Camargo et al. 2008, Teixeira & Ferreira 2010, Guayara 
Barragán & Bernal 2012, Liedtke et al. 2014). However, 
females of both species have similar body sizes (Ghirardi & 
López 2020) and the same diameter of the eggs (⁓0.9 mm: 
Zaracho et al. 2005). Thus, the reproductive effort of P. 
santafecinus would be comparatively greater than that of P. 
albonotatus. This would be a particularly interesting 

characteristic since it is the only strategy that would 
differentiate the reproduction between the two species and 
contribute to ecological niche segregation. 

The number of eggs per nest in both species was highly 
variable. At lower latitudes, Cajade et al. (2020) recorded 
between 300 and 400 more eggs per nest in both species than 
our observed eggs. For P. albonotatus, Zaracho et al. (2005) 
and Schaefer & Kehr (2010), working at the same latitude as 
Cajade et al. (2020), report small differences between the 
studies that could be due to the number of nests analyzed. In 
even lower latitudes than the previously mentioned works, 
Rodríguez et al. (2004) and Prado & Haddad (2005) 
registered almost twice as many eggs per nest as our study 
(see Table 3). The variations found between the different 
studies may be due to intrinsic characteristics of the 
populations and individuals, such as being composed of 
females of different ages and sizes, where young and small 
females lay fewer eggs than older and larger females and, 
therefore, have different reproductive output (Salthe & 
Duellman 1973, Perotti 1997, Sousa & Ávila 2015). Another 
factor that may influence the differences is the number of 
oviposition events that females had during the reproductive 
season, with each consecutive reproductive event during the 
same season resulting in fewer eggs laid (Howard 1978). The 
differences in the number of eggs could also be explained 
due to the asynchronous maturation of the oocytes that 
would lead to different availability of mature eggs in each 
reproduction (Davidson & Hough 1969). Also, extrinsic 
characteristics of the population, such as geographic 
(latitudinal) or abiotic (temperature and rainfall) factors, are 
known to influence the number of eggs per laying (Morrison 
& Hero 2003). An idea for future assessments is that each 
female evaluates the possibility of the eggs’ survival 
(considering the temperatures and rainfall) and "bets" a 
certain amount in each reproduction. 

In contrast, a characteristic that shows a high overlap in 
reproductive characteristics between the species is the 
communal clutches. Communal clutches are a reproductive 
strategy present by both species. Different studies described 
communal clutches in species of the subfamily Leiuperinae. 
This behavior has been hypothesized as a reproductive 
strategy to (i) increase the protection against desiccation of 

Figure 6. Mean hatching time of eggs 
per clutch (a) and success of eggs per 
clutch (b) of P. albonotatus (Pa) and P. 
santafecinus (Ps). 
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the embryos and decrease the predation on tadpoles 
(Giaretta & Menin 2004, Zina 2006, De Lacerda et al. 2010); 
(ii) anchor the clutches when the terrain is steep and sparse 
of vegetation (Giaretta & Facure 2006), although this would 
not be the case for here studied populations that inhabit 
water bodies without runoff; or, (iii) it can also be the 
involuntary result of massive aggregations of reproductive 
adults (Giaretta & Facure 2006). Within the genus 
Physalaemus, communal clutches have been recorded in P. 
nattereri (Steindachner 1863), P. cuvieri Fitzinger, 1826, P. 
gracilis (Boulenger, 1883), P. biligonigerus (Cope, 1861), P. aff. 
olfersii (Lichtenstein & Martens 1856) (Barreto & Andrade 
1995, Giaretta & Menin 2004, Giaretta & Facure 2006, Zina 
2006, De Lacerda et al. 2010, Villamil & Maneyro 2014). This 
behavior was also recorded in the genera Pleurodema (P. 
guayapae: Barrio 1964) and Engystomops (E. pustulosus (Cope 
1864): Valetti et al. 2014), both from the subfamily 
Leiuperinae. Furthermore, we recorded a communal clutch 
composed of foam nests of the two species studied, a poorly 
documented event (Giaretta & Menin 2004, Cajade et al. 
2020).  

When analyzing the macromolecular composition of 
eggs, we found a similar composition of glycogen and lipids 
between species. However, as we had few samples with very 
variable protein values, we cannot conclude about this 
variable. Anyway, being a little-studied trait, our results 
serve as a basis for future studies and comparisons (e.g., 
with less related species). Considering the macromolecular 
composition similitude of the eggs between species, the 
observed differences in the embryo development timing 
should result from other factors rather than macromolecular 
composition (Lubzens et al. 2010, Li & Zhang 2017). 

The embryos of the foam nests were initially at stage 8 
for P. albonotatus and at stage 12 for P. santafecinus. Both 
were seen at the same time; therefore, fertilization in P. 
santafecinus occurred sometime earlier than in P. albonotatus 
(Cajade et al. 2020), or the development of the first stages of 
their embryos is faster. For both species, the embryos 
developed approximately one stage every three hours. 
Embryos belonging to a predominant stage were found in 
each sample obtained. However, eggs at one lower or higher 
stage than the most frequent were also observed in each 
sample, so it would be interesting to assess which factors are 
influencing the individual embryonic development of the 
eggs within the same nest, generating this asynchrony. From 
stage 16, the embryos curve over the yolk (Grosso et al. 
2019). At stage 19, small anterodorsal brown spots appear 
that increase with each stage (Grosso et al. 2019). The 
characteristics observed at each stage for both species 
coincide with those described by Gosner (1960) and Gómez 
et al. (2016). In both species, embryos hatch from the egg at 
stage 21, with long gills and operculum at the base (Grosso 
et al. 2019). This stage corresponds to the second stage 
belonging to the prometamorphic larval stage, according to 
Gómez et al. (2016). According to Gosner (1960), the 
embryos hatch between stages 17 and 20, and from stage 21 
and before stage 25, the transition to a feeding and free- 
 

swimming tadpole occurs. 
Interestingly, although embryonic development is 

similar in both species, we found differences in hatching 
time. The time to hatching was greater in P. albonotatus than 
in P. santafecinus. Considering that the studies were carried 
out simultaneously in the same pond for both species and, as 
we mentioned earlier, the size of the eggs does not differ 
between species; therefore, this difference should be 
attributed to the intrinsic genetic characteristics of species. 
Hatching is the first ontogenetic switch point in the lives of 
most animals. Hatchlings leave the protection and 
constraints of the egg, gaining mobility and access to 
external resources, but often suffer high mortality levels 
(Wilbur 1980, Gosselin & Qian 1997), creating a strong 
opportunity for natural selection (Arnold 1986). Hatching 
plasticity linked to the time of embryonic development and 
timing of hatching may occur in response to physical 
conditions, predators, and pathogens (Martin 1999, 
Warkentin 2007, Gomez Mestre et al. 2008). It may be for 
intra- or interspecific resource competition of hatchlings. The 
differences could indicate a strategy by P. santafecinus to 
release their larvae sooner in the water body so they could 
take advantage of the resources before the tadpoles of P. 
albonotatus do, moreover considering the similarity in 
ecomorphology of their tadpoles (Altig & Johnston 1989). 
Another possibility would be that hatching asynchrony 
decreases interspecific competition during the larval stage 
since morphologically similar but differently sized larvae 
would occupy different niches (for example, consuming prey 
of various sizes) (Santos et al. 2015, Protazio et al. 2019). 
These hypotheses must be tested by evaluating niche 
overlap and competition between tadpoles of each species. 
Shortening the egg phase could also be a strategy to reduce 
hazards from these stages, like predation, nanoparticles, 
parasitism, pond desiccation, and food availability, among 
other several threats to embryonic stages (Vargas & 
Gutiérrez 2005, Lind et al. 2008, Enriquez Urzelai et al. 2013, 
Fan et al. 2016, Nogueira Costa et al. 2016, Spence et al. 2016, 
Bach et al. 2018, Groffen et al. 2019, Hudgens & Harbert 
2019, Úbeda et al. 2019). Among these threats, aquatic 
moulds from studied environments are known to increase 
the physiological stress and mortality of P. albonotatus 
embryos (Ghirardi et al. 2018). However, we did not observe 
infections in the studied clutches and registered a high 
hatching success. Vonesh & De la Cruz (2002) and Halliday 
(2008) showed that larval stages are more sensitive to 
predation, desiccation, and other common amphibian threats 
than egg stages. Moreover, a significant portion of the eggs 
that did not hatch (P. albonotatus = 7%, P. santafecinus = 4%) 
may correspond to unfertilized eggs or unviable embryos. 

Amphibians are the vertebrate group with the highest 
proportion of vulnerable and declining species (Stuart et al. 
2004, Lötters et al. 2009, Kiesecker 2011, IUCN 2022), 
knowing their basic biology is essential for their 
conservation. This work provides valuable data that help to 
fill the knowledge gap on the reproductive biology of P. 
albonotatus and P. santafecinus. 
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